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We propose nanostructured carbonaceous-palladium (CePd) films as promising material

for covering different, big surfaces as improving hydrogen storing properties material. The

CePd films were obtained by annealing of samples prepared by physical vapor deposition

on fused silica substrates. Palladium nanocrystallites placed within the film volume and

also on its surface enhanced absorption of hydrogen due to dissolution of H2 molecules in

the nanocrystallites. We studied structure, morphology and topography of these films by

different methods (XRD, GIXRD, SEM and EDS). XRD measurements performed in situ under

H2/N2 atmosphere showed that a phase and b phase of palladium hydride were formed.

Copyright ª 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
Introduction

Recently new alternative energy sources are still being

searched in order to replace fossil fuels. Hydrogen is an energy

carrier with great potential to become amajor fuel for vehicles

and stationary power generation. Hydrogen is an environ-

mentally friendly substance because energy conversion pro-

cess with H2 is clean, only water vapor is formed as final

product. Hydrogen can be stored in the form of gas, cryogenic

liquidor adsorbedgas in solidmaterials [1,2].Hydrogen storage

in solid materials can be realized by chemical reaction with

various metals or metal alloys [2,3]. Hydrogen storage mate-

rials can be divided into two classes depending on the

hydrogen sorption mechanism: materials in which only
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physisorption take place or materials in which absorption is

due to chemisorption [4]. In case of physisorption molecular

hydrogen is weakly bound to the adsorbent surface by van der

Waals bonds. The adsorption process is fast, and fully revers-

ible. In case of chemisorption hydrogen molecules dissociate

to hydrogen atoms which can form ionic or covalent bonds

with thematerial. These bonds are much stronger than bonds

of van der Waals, so hydrogen desorption can be incomplete.

Presently, metal hydrides [5] or carbon nanoporous struc-

ture [6e9] is promising materials at which hydrogen can be

stored. Microporous carbon such as activated carbon, carbon

nanofibers, nanotubes and other carbon nanostructures

(foam, graphite) is attractive candidates for hydrogen storage

due to their light weight, high surface area, chemical stabil-

ities and also high porosity.
ished by Elsevier Ltd. All rights reserved.

mailto:ewa.kowalska@itr.org.pl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhydene.2014.02.095&domain=pdf
www.sciencedirect.com/science/journal/03603199
www.elsevier.com/locate/he
http://dx.doi.org/10.1016/j.ijhydene.2014.02.095
http://dx.doi.org/10.1016/j.ijhydene.2014.02.095
http://dx.doi.org/10.1016/j.ijhydene.2014.02.095


Fig. 1 e SEM micrograph of film obtained on fused silica in

PVD process.
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Among hydrides, palladium is an element usually taken

into consideration due to its high ability to absorb hydrogen

[10,11]. The metal acts as an activator of hydrogen by revers-

ibly dissociating into metal-H atom. As a result palladium

hydride PdHx is formed. Depending on the value of absorbed

hydrogen (x), palladium hydride can occur in two different

phases. At low H2 concentration (x < 0.02) a solid solution (a

phase) is formed. When hydrogen concentration increases

and x is between 0.02 and 0.6 the second phases (b phase)

appears and coexist with a phase. Further increase of H2

concentration resulting in disappearing of a phase and only b

phase remains [12]. The hydrogen solubility in palladium

nanoparticles is much greater compared to the bulk material.

In this work we present the carbonaceous e palladium

(CePd) films which can be used as potential hydrogen storage

material. These films were deposited on fused silica sub-

strates using physical vapor deposition (PVD) process and

next annealing of PVD films at different temperatures in the

range from 500 �C to 700 �C in argon gas at the same time of
Fig. 2 e SEM micrograph of film annealed in a) 500 �C, b) 600 �C
700 �C obtained in LABE mode.
30 min. SEM studies show that Pd nanoparticles due to tem-

perature get out on the surface of the filmswhat enhanced the

reaction between hydrogen-palladium nanocrystals. Palla-

dium nanograins present in nanostructured films are

responsible for forming palladium hydride. On this basis we

suggest that CePd films can be used as storage materials,

although we should be aware that quantity of stored H2 is

small. Our materials can be applied as a container to store

small amounts of hydrogen and also to fast absorption and

desorption as well as to select of H2 from gas mixture.

In our previous papers [13e17] we have described many

properties such as electrical, morphological, topographical,

hydrogen sensing and storage. These properties are depen-

dent not only on the carbonaceous matrix structure but also

on the size and structure of Pd nanocrystals embedded in the

C matrix.
Experimental details

Preparation of CePd films

Nanostructured carbonaceous-palladium (CePd) films were

preparedbyphysical vapor deposition (PVD) and thenannealed

under an argon atmosphere. Fullerene C60 and palladium ace-

tate Pd(AOc)2 were precursors of the initial nanostructured

CePd films in PVD process. Both compounds were evaporated

on unpolished fused silica substrates from two separated

sources with currents flowing through the sources: IC60 ¼ 2.0 A

and IPd ¼ 1.2 A. Duration time was 10 min and the distance be-

tween sources and substrates was 60 mm. As a result, CePd

filmswith the thickness of about 300 nmwere deposited. Then

the films were annealed at different temperatures in the range

from 500 �C to 700 �C in an argon flow rate of 40 L/h.

SEM and EDS characterization

The topography, morphology and structure of the prepared

CePd films were analyzed by Scanning Electron Microscopy
, c) 700 �C obtained in SE mode and d) 500 �C, e) 600 �C, f)
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Fig. 3 e Cross-sectional SEM image of CePd film annealed

at 700 �C.
Fig. 5 e Diffraction patterns of the CePd film annealed at

600 �C under the H2/N2 atmosphere (a e 0% H2, b e 0.5% H2,

c e 1% H2, d e 2% H2, e e 4% H2).
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(SEM) with the JEOL JSM-7600F field emission scanning mi-

croscope, with SE (Secondary Electron) and LABE (Low Angle

Backscattered Electron) detectors. The quantitative analysis of

CePd films was determined by energy-dispersive spectros-

copy (EDS). The EDS measurements were performed with

INCA ENERGY 250 using accelerating voltage of 7 kV using area

scanning method.

XRD studies

In order to determine the CePd films hydrogen uptake ca-

pacity, X-ray diffraction (XRD) studies were performed on the

W1 beamline at Doris III synchrotron at Hasylab. GIXRD

(Graizing Incidence X-ray Diffraction)measurement geometry

with the 2� incident angle was used to enhance diffraction

effects that are very weak because of low thickness of the

studied films (w300 nm). A double Si (111) crystal mono-

chromator provided radiation with a wavelength of

l ¼ 0.154056 nm, equal to that of the Ka1Cu fluorescence line,

was used. The special cell was constructed to enable the flow
Fig. 4 e Diffraction patterns of the CePd film annealed at

500 �C under the H2/N2 atmosphere (a e 0% H2, b e 0.5% H2,

c e 1% H2, d e 2% H2, e e 4% H2).
of H2/N2 mixture for in situ diffraction measurements. The gas

flow rate was maintained at 1 L/min with different concen-

tration of hydrogen in the range from 1 vol.% to 4 vol.%.
Results and discussion

SEM and EDS studies

CePd filmswere formed on the surface of SiO2 where grains of

unpolished fused silica have a large roughness. The film

which covers the surface of substrate in PVD process had a

thickness about 300 nm and was presented in Fig. 1. Grains of

substrate with difference size and shape characterized

smooth edges.

After the annealing process in argon, the structure of the

CePd films is changed depending on the temperature. The
Fig. 6 e Diffraction patterns of the CePd film annealed at

700 �C under the H2/N2 atmosphere (a e 0% H2, b e 0.5% H2,

c e 1% H2, d e 2% H2, e e 4% H2).
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Table 1 e Lattice constant of Pd/H crystals.

% H2 in H2/N2 mixture 500 �C 600 �C 700 �C

Pd(H)
a phase

PdHx

b phase
Pd(H)

a phase
PdHx

b phase
Pd(H)

a phase
PdHx

b phase

0 3.903 3.901 3.904 Not found

1 3.904 3.904 3.905 Not found

2 3.906 3.905 3.906 Not found

3 3.907 3.906 4.037 3.905 Not found

4 3.909 4.030 3.908 4.039 3.906 Not found
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morphology of films which were annealed at 500 �C, 600 �C
and 700 �C is shown in Fig. 2. In the films obtained in PVD

process Pd nanograins are not visible because of their small

size (a few nm) [18]. In the annealing process, Pd nanograins

were coagulated in larger ones and were visible on the surface

of unpolished fused silica substrate (Fig. 2). The size of Pd

nanograins depends on the annealing temperature which is

visible in Fig. 2.

It was observed that average size of nanograins Pd

increased with increasing annealing temperature and after

500 �Cwas 25 nm and after 600 �Cwas 500 nm and after 700 �C
was 630 nm.

The thickness of all films was similar. In Fig. 3 cross-

sectional SEM image of CePd film annealed at 700 �C is pre-

sented. It can be seen that film thickness is about 300 nm.

The content of palladium in the CePd films was deter-

mined by EDS method. Due to the small thickness of the films

(about 300 nm), EDS analysis was performed using an accel-

erating voltage of 7 kV to minimize X-ray excitation volume.

EDS measurements showed that with increasing the anneal-

ing temperature decreased the thickness of the films due to

the loss of carbon as a result of decomposition of precursors.

The presence of precursors e C60 and Pd(OAc)2 was confirmed

by FTIR and thermal analysis [14]. Therefore on the EDS

spectra, intensity of PdLa line increased with growth of the

annealing temperature. Additionally, intensity of the SiKa line

from the substrate increases due to reduced thickness of the

CePd films. In this situation, the amount of Pd in the films can

be presented as the ratio of Pd/C. The calculated ratio of Pd/C

for the films annealed at 500 �C, 600 �C and 700 �C is 0.18, 0.28

and 0.43, respectively.
XRD measurements

CePd films annealed at 500 �C, 600 �C and 700 �C, deposited on

unpolished fused silica, were selected to research their

behavior in hydrogen presence at different concentrations

from 0 to 4 vol.%. Changes in the diffraction pattern during the

process of absorption/desorption of hydrogen were observed

in situ by using specially made measuring cell. It enabled the

diffraction measurement of CePd films in the full range of

incidence and reflection angles, with adjustable flow

controlled gas mixture H2/N2. Results of these measurements

are shown in Figs. 4e6.

In these studies we observed the formation of palladium

hydride PdHx b-phase in samples annealed at 500 and 600 �C
but in the case of sample annealed at 700 �C palladium hy-

dride was not formed. This result is likely due to the
graphite shells [19] which are formed around the Pd nano-

grains and hinder the hydrogen access into the Pd grains

and also increase of grain sizes of Pd. Changes of lattice

constant of a-phase of Pd(H) provide a high hydrogen ab-

sorption in CePd films annealed at 500 and 600 �C and weak

absorption in the film annealed at 700 �C. Lattice constant of

Pd/H crystals obtained from X-ray measurements are sum-

marized in Table 1.
Conclusions

In this work nanostructured carbonaceous-palladium (CePd)

films prepared by PVD method and annealed at different

temperatures were studied. CePd films annealed at 500 and

600 �C can be used as hydrogen storagematerials, althoughwe

should be aware that the quantity of stored H2 is small. In

these films a phase and b phase of palladium hydride were

formed. The film annealing at temperature of 700 �C causes

changes in the structure of CePd film resulting in deactivation

of palladium grains on hydrogen absorption. This was con-

nected with formation of graphite shells around Pd

nanograins.
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