WINSON SCIENCE AND TECHNOLOGIES AND TECH

INFLUENCE OF CVD PROCESS DURATION ON MORPHOLOGY, STRUCTURE AND SENSING PROPERTIES OF CARBONACEOUS -PALLADIUM FILMS

<u>Ewa Kowalska¹, Anna Kamińska¹, Elżbieta Czerwosz¹, Mirosław Kozłowski¹, Kamil Sobczak², Bartłomiej Witkowski²</u>

¹Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland ² Institute of Physics PAS, al. Lotników 32/46, 02-668 Warsaw, Poland

Nanostructured materials containing different allotropic form of carbon such as foam, graphite, fullerene C_{60} , nanotubes, nanofibers doped with transition metals (Pd, Pt, Cu, Fe, Ni) can be used in various applications e.g. in catalysis, hydrogen storage materials, hydrogen sensors, as electrodes in batteries or in fuel cell. Presently hydrogen technologies awaken of great interest among scientists and entrepreneurs. This interest is related to the potential use of hydrogen as an energy carrier. Recently, the growth of the hydrogen importance in the word economy e.g. in transport, chemical compounds production, in electronic and metallurgical industry has been noticeable.

We present C-Pd films based on nanoporous carbonaceous matrix containing Pd nanograins which are promising materials for hydrogen sensing applications. These films were prepared by PVD method and next were modified in CVD process at different times (5, 10 and 30 minutes). The aim of this work is to study the influence of duration of CVD process on morphology, topography, structure and hydrogen sensing properties of these films. These films are deposited on alumina (Al₂O₃) substrates and can be used as an active layer in hydrogen sensor.

SEM studies of PVD film

SEM images show boundaries of substrate grains. On substrate surface carbonaceous nanograins are visible. These nanograins have different sizes, posses rounded shapes and smooth walls.

After CVD modification morphology, topography and structure of PVD film are drastically changed.

Parameters of CVD process

Sample	Temp. [°C]	Feed of xylene [ml/min]	Time [min]	Argon [L/h]
S 5	650	0,1	5	40
S10	650	0,1	10	40
S30	650	0,1	30	40

TEM image of CVD films

dete

EDS measurements

Energy-Dispersive Spectroscopy

EDS analysis of S5, S10 and S30 films

Elements	S5	S10	S30
С	73,64	69,33	65,29
0	16,46	16,46	15,02
AI	4,68	7,41	12,23
Pd	5,22	6,77	7,46
Pd/C	0,07	0,09	0,11

All data are given in weight %

Al and O signals originated from the substrate Al_2O_3

The thickness of the films decreases with increasing time of CVD modification.

The smallest thickness has film modified the longest.

The ratio of Pd/C increases with increasing duration of CVD process.

Hydrogen sensing of C-Pd films

Hydrogen sensing properties were performed in different concentration of H_2/N_2 (0.5vol.%, 1vol.% and 2vol.%). The resistance changes of all films were carried out in the special chamber. The films' resistance decreases in hydrogen presence.

The sensitivity ($\Delta R/R_o$) was calculated using the following equation:

where R - film resistance after exposure to H_2 R₀ - film initial resistance in H_2 absence

$\begin{array}{c} 55 \\ 50 \\ 45 \\ 45 \\ 40 \\ 0 \\ 1000 \\ t, s \end{array}$

The resistance changes of S30 film in mixture of $1\%H_2/N_2$

The sensitivity of S5, S10 and S30 films as a function of H_2 concentration

Resistance of C-Pd films in air

Films	R ₀ [Ω]
S5	2.14·10 ⁹
S10	1.27·10 ⁸
S30	7.36·10 ⁷

Film modified in 30 minutes has the highest sensitivity

This film characterizes the smallest thickness and the largest Pd nanograins and the greatest ratio of Pd/C, thus it can be used in hydrogen sensor applications

Cathodoluminescence studies

SEM (a) and CL (b) images are presented for S10 film

On CL image 2 objects showing luminescence are visible. The object placed on top left shows maximum only at 450 nm, but object placed on bottom right shows two maxima at 450 nm and at 750 nm. Emission band at 750 is very strong.

Conclusion

- duration of CVD process influences on morphology, topography and structure of carbonaceous matrix and also Pd nanograins in films prepared by PVD process;
- with increasing duration of CVD process the films' thickness decreases;
- with increasing duration CVD process the size of Pd nanograins increases;
- the ratio of Pd/C increases with increasing time of CVD process;
- the film with the smallest thickness has the highest sensitivity and can be used as an active layer in hydrogen sensor;
- Pd nanograins encapsulated in graphite shells are optical active and show emission bands with maxima at 450 and 750 nm

This project is co-financed by the European Regional Development Fund within the Innovative Economy Operational Programme 2007-2013 No. UDA-POIG.01.03.01-14-071/08-09.

