VI Polish Conference on Nanotechnology 9-12.07.2013 Szczecin

Carbon Nanotubes films covered with palladium nanocrystals

I. STĘPIŃSKA, J. RADOMSKA, M. KOZŁOWSKI, E. CZERWOSZ¹, W. KOWALSKI²

¹Instytut Tele- i Radiotechniczny, ul Ratuszowa 11, 03-450 Warszawa

² Instytut Fizyki PAN al. Lotników 32/46, 02-668 Warszawa

Recently, it has been demonstrated that carbon nanotubes (CNTs) represent a new type of a chemical sensor material capable for detecting small concentrations of molecules with a high sensitivity under ambient conditions. Necessary prerequisite is that the molecules to be detected must have a distinct electron donating or accepting ability, which is fulfilled, for example, by ammonia (NH_3) as a donor and nitrogen dioxide (NO_2) as an acceptor. The adsorption of these molecules on the nanotubes is associated with a partial charge transfer, which alters the charge-carrier concentration or, alternatively, the adsorbed molecules may affect the potential barriers present at the tube-electrode contacts. In any case, the resulting change in the electrical resistance of the nanotube is utilized as a sensor signal. If the nanotube is semiconducting in nature, charge transfer can lead to dramatic changes in the electrical conductance of the nanotube, which serves as the basis for highly sensitive nanotube molecular sensors. For the detection of molecules that are only weakly adsorbed (e.g., H₂, CO), the change in resistance is often too small. A possible method to overcome this drawback is accomplished by the modification of the nanotube sidewalls with nanoparticles made of a suitable metal. For instance, sensitive hydrogen sensors operating at room temperature can be obtained via the deposition of palladium nanoparticles on CNTs, because of high selectivity Pd to hydrogen [1,2]. In this work the method of a preparation CNTs films functionalized by palladium nanoparticles is presented. This is three steps method in which nanocomposites CNTs-Ni-Pd films are obtain. These films were characterized by electron microscopy methods (SEM-scanning electron microscopy, TEM – transmission electron microscopy).

Preparation steps of CNTs-Ni-Pd films

PVD (Physical Vapor Deposition)

- Films obtained in three steps method contain: carbon (CNTs), Ni and Pd
- Ni nanoparticles are inside CNTs and Pd nanoparticles decorated nanotubes which allow to attached various molecules to CNTs

This project is co-financed by the European Regional Development Fund within the Innovative Economy Operational Programme 2007-2013 (title of the project "Development of technology for a new generation of the hydrogen and hydrogen compounds sensor for applications in above normative conditions") No UDA-POIG.01.03.01-14-071/08-08.