

XII Konferencja Naukowa Czujniki Optoelektroniczne i Elektroniczne, Karpacz 24-27.06.2012

Wpływ możliwości tworzenia się PdH_x na wykrywalność wodoru przez warstwy palladowo-węglowe

<u>E.Kowalska¹, E.Czerwosz¹, R.Diduszko¹, A.Kamińska¹, M.Danila²</u>

¹Instytut Tele- i Radiotechniczny, ul Ratuszowa 11, 03-450 Warszawa, Polska ²National Institute for R&D in Microtechnologies IMT, Erou Iancu Nicolae street, 077190 Bucharest, Rumunia

Wprowadzenie

Wodór w ostatnich latach zyskuje na znaczeniu a liczba jego zastosowań przemysłowych gwałtownie wzrasta. Powszechnie stosowany jest w produkcji związków chemicznych, jak również w produkcji półprzewodników czy w ogniwach paliwowych. W przemyśle transportowym może stać się alternatywą dla paliwa i ropy. Wodór w mieszaninie z powietrzem jest gazem wybuchowym (DGWwynosi 4% H₂ w powietrzu), stąd istnieje konieczność monitorowania atmosfery wszędzie tam gdzie ten gaz jest używany. Zatem istnieje potrzeba rozwoju czujników wodoru o wysokiej czułości, selektywności, szybkim czasie odpowiedzi i krótkim czasie regeneracji.

Nanostrukturalne warstwy palladowo-węglowe (nw-Pd-C) mogą znalęźć zastosowanie w czujnikach wodoru lub materiałach do magazynowania wodoru. Czujniki z warstwą aktywną na bazie nanomateriałów Pd-C umożliwiają zwiększenie czułości urządzenia na H₂, skrócenie czasu jego odpowiedzi i regeneracji. Pod wpływem wodoru nanoziarna Pd obecne w matrycy węglowej tworzą związek chemiczny-wodorek palladu PdH_x, albo w postaci roztworu stałego dla x<0,02 (faza a) albo jako faza metaliczna dla x>0,61 (faza β). Z kolei matryca węglowa o dobrze rozwiniętej powierzchni właściwej również sprzyja silnej fizycznej adsorpcji wodoru. Struktura i morfologia obu składników warstwy aktywnej czujnika (Pd i C) ma wpływ na szybkość reakcji na wodór.

Synteza nanostrukturalnych warstw palladowowęglowych

Początkowe nanostrukturalne warstwy palladowo-węglowe zostały otrzymane w procesie PVD (Physical Vapor Deposition) w warunkach dynamicznej próżni 10⁻⁵ mbar podczas odparowania z dwóch oddzielnych źródeł prekursorów warstw: fulerenu C_{60} i octanu Pd(II) (**I rodzaj warstw**). Warstwy osadzano na podłożach ceramicznych Al₂O₃ o porowatości ~mikornowej

Następnie warstwy PVD dla wzmocnienia efektu oddziaływania z H₂ zostały poddane obróbce termicznej w atmosferze obojętnej (argon) w czasie 5 minut i temp. 650°C . Warstwy po procesie wygrzewania zostały określone jako "an"-PVD (II rodzaj warstw).

III rodzaj warstw został otrzymany poprzez modyfikację warstw PVD w reaktorze kwarcowym metodą chemicznego osadzania z par (Chemical Vapor Depositin) stosując ksylen i temp. 650°C jako czynniki modyfikujące.

Rodzaj warstwy	Proces	s PVD Proces wygrzewania Proces CVD			/D			
	Temp (°C) podłoża	Czas t (min)	Temp. (°C)	Czas t (min)	Ar (I/min)	Temp. (°C)	Czas † (min)	Ar (I/min)
I - PVD	54	10						
II - "an"-PVD			650	5	40			
III -CVD						650	5	40

Warstwa PVD

Badania SEM i TEM

I rodzaj warstw

Na powierzchni warstwy obecne są tylko ziarna węglowe, a nanoziarna Pd znajdują się pod powierzchnią matrycy węglowej

Na powierzchni warstw obecne są skupiska nanoziaren Pd o rozmiarach od 20 do 300nm

Warstwa CVD III rodzaj warstw

Na powierzchni warstw wzrasta gęstość rozłożenia aglomeratów nanoziaren Pd oraz ich rozmiar, dochodzących nawet do 800nm, matryca węglowa staje się porowata.

Nanoziarna Pd w warstwie wyjściowej PVD o rozmiarach od 2 do 10nm

w argonie nanoziarna Pd zostały otoczone warstwą węglową o grubości ~5,7nm

Różnice w morfologii, topografii i strukturze warstw PVD, "an"-PVD i CVD oraz ich elementów składowych tzn nanziaren Pd i rodzaju matrycy węglowej wpływają na efektywność tworzenia się wodorku palladu PdH_x

osiąga rozmiar ~20 nm

Badania rentgenowskie z zastosowaniem techniki stałego kąta padania wiązki pierwotnej (SKP)

Z powodu bardzo cienkiej warstwy palladowo-węglowej (grubość ~300nm) dla wzmocnienia efektu dyfrakcyjnego pochodzącego od warstwy, badania XRD prowadzono techniką stałego kata padania wiązki pierwotnej (SKP z ang. GIXD) dla kąta 0.5. Pomiary prowadzono w atmosferze azotu i mieszaninie azotu z wodorem dla różnej koncentracji H₂ (O-8% obj.). Z pomiarów dyfrakcji wynika, że wodorek palladu PdH_x tworzy się zarówno w warstwie wygrzewanej "an"-PVD jaki i modyfikowanej w procesie CVD ale szybkość jego powstawania jak i rozkładu jest zdecydowanie mniejsza dla próbek po procesie CVD. Ta różnica obu warstw w szybkości reakcji na wodór związana jest z grubością otoczek węglowych, istniejących wokół nanoziaren Pd oraz z wielkością nanoziaren palladu. Im większe ziarna tym proces tworzenia się PdH_x zachodzi wolniej.

Nanoziarna Pd w warstwach CVD są zdecydowanie większych rozmiarów niż w warstwach "an"-PVD poza tym otoczone są przez większą liczbę warstw grafitowych i to może powodować utrudnienia w kontakcie pomiędzy powierzchnią ziarna Pd a wodorem. Otoczka węglowa również przyczynia się do niecałkowitej desorpcji H₂ z warstwy CVD.

Dyfraktogram GIXD dla warstwy "an-PVD" a) w azocie przed wprowadzeniem H_2 b) w mieszaninie 4% H_2/N_2 c) w mieszaninie 8% H_2/N_2 d) w azocie po wypłukaniu H₂

Dyfraktogram GIXD dla warstwy CVD a) w azocie przed wprowadzeniem H_2 b) w mieszaninie 8% H_2/N_2 (po 5 min) c) w mieszaninie 8% H_2/N_2 (po 30 min) d) w azocie po wypłukaniu H_2

Pomiary właściwości elektrycznych warstw nw-Pd-C

Rezystancja warstw była mierzona na opracowanym i skonstruowanym w ITR stanowisku pomiarowym. Rezystancję mierzono dla mieszaniny 1% i 2% obj. wodoru w azocie. Odpowiedź warstw (S) na gaz zawierający wodór została wyznaczona zgodnie ze wzorem:

$0 - \mathbf{H}_2 $ on	a H ₂ on	b
10 Λ Λ Λ		

$$S(\%) = 100\% \frac{\Delta R}{R_o} = \frac{R_H - R_o}{R_o}$$

gdzie R_H i R_o to rezystancja warstw w gazie zawierającym H_2 i w gazie bez H_2

Odpowiedź (S) warstw na gaz zawierający 1% obj. H₂ w azocie: a) "an"-PVD i b) CVD

EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

Praca jest współfinansowana z Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka 2007-2013 (projekt pt. "Opracowanie technologii nowej generacji czujnika wodoru i jego związków do zastosowań w warunkach ponadnormatywnych", umowa Nr UDA-POIG.01.03.01-14-071/08-07)

Podsumowanie

- 1. Wytworzono dwa rodzaje warstw czułych na wodór ("an"-PVD i CVD)
- 2. W wyniku reakcji z wodorem nanoziarna palladu zawarte w warstwach tworzą wodorek palladu PdH_x
- 3. Szybkość tworzenia się związku PdH_x decyduje o szybkości odpowiedzi warstwy na gaz zawierający H₂
- 4. Szybkość odpowiedzi warstw modyfikowanych w procesie CVD jest około 5 razy wolniejsza niż dla warstw wygrzewanych "an"-PVD
- 5. Desorpcja wodoru z warstw CVD zawierających większe ziarna Pd w grubszych otoczkach grafitowych nie jest całkowita
- 6. W celu zwiększenia efektywności desorpcji wodoru z warstw CVD należy zastosować ich wygrzewanie